Estimating respiratory system compliance during mechanical ventilation using artificial neural networks.
نویسندگان
چکیده
UNLABELLED In this study we evaluated whether a technology based on artificial neural networks (ANN) could estimate the static compliance (C(RS)) of the respiratory system, even in the absence of an end-inspiratory pause, during continuous mechanical ventilation. A porcine model of acute lung injury was used to provide recordings of different respiratory mechanics conditions. Each recording consisted of 10 or more consecutive breaths in volume-controlled mechanical ventilation, followed by a breath having an end-inspiratory pause used to calculate C(RS) according to the interrupter technique (IT). The volume-pressure loop of the breath immediately preceding the one with pause was given to the ANN for the training, together with the C(RS) separately calculated by the IT. The prospective phase consisted of giving only the loops to the trained ANN and comparing the results yielded by it to the compliance separately calculated by the investigators. Determination of measurement agreement between ANN and IT methods showed an error of -0.67 +/- 1.52 mL/cm H(2)O (bias +/- SD). We could conclude that ANN, during volume-controlled mechanical ventilation, can extract C(RS) without needing to stop inspiratory flow. IMPLICATIONS We studied the application of artificial neural networks (ANN) to the estimation of respiratory compliance during mechanical ventilation. The study was performed on an animal model of acute lung injury, testing the performance of ANN in both healthy and diseased conditions of the lung.
منابع مشابه
Assessment of respiratory system mechanics by artificial neural networks: an exploratory study.
We evaluated 1) the performance of an artificial neural network (ANN)-based technology in assessing the respiratory system resistance (Rrs) and compliance (Crs) in a porcine model of acute lung injury and 2) the possibility of using, for ANN training, signals coming from an electrical analog (EA) of the lung. Two differently experienced ANNs were compared. One ANN (ANN(BIO)) was trained on trac...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesia and analgesia
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2003